Contemporary Psychology, Vol. 19, No. 1, 2016


Original scientific paper

The Application of Artificial Neural Networks in Predicting Children’s Giftedness


Nina Pavlin-Bernardić - Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb
Silvija Ravić - Elementary school Sesvetska Sela, Sesvete
Ivan Pavao  Matić - Elementary school Sesvetska Sela, Sesvete

DOI: 10.21465/2016-SP-191-04

Fulltext (english, pages 49-59).pdf


Abstracts
Artificial neural networks have a wide use in the prediction and classification of different variables, but their application in the area of educational psychology is still relatively rare. The aim of this study was to examine the accuracy of artificial neural networks in predicting students’ general giftedness. The participants were 221 fourth grade students from one Croatian elementary school. The input variables for artificial neural networks were teachers’ and peers’ nominations, school grades, earlier school readiness assessment and parents’ education. The output variable was the result on the Standard Progressive Matrices (Raven, 1994), according to which students were classified as gifted or non-gifted. We tested two artificial neural networks’ algorithms: multilayer perceptron and radial basis function. Within each algorithm, a number of different types of activation functions were tested. 80% of the sample was used for training the network and the remaining 20% to test the network. For a criterion according to which students were classified as gifted if their result on the Standard Progressive Matrices was in the 95th centile or above, the best model was obtained by the hyperbolic tangent multilayer perceptron, which had a high accuracy of 100% of correctly classified non-gifted students and 75% correctly classified gifted students in the test sample. When the criterion was the 90th centile or above, the best model was also obtained by the hyperbolic tangent multilayer perceptron, but the accuracy was lower: 94.7% in the classification of non-gifted students and 66.7% in the classification of gifted students. The study has shown artificial neural networks’ potential in this area, which should be further explored.

Keywords
gifted students, identification of gifted students, artificial neural networks



© Naklada Slap, with you since 1985. All rights reserved.
Kontakt: Head office

NAKLADA SLAP d.o.o.
Dr. Franje Tuđmana 33, 10450 Jastrebarsko

+ 385 (0)1 6281 774
nslap@nakladaslap.com
Branch office

NAKLADA SLAP
Centar za edukacije i istraživanja
Miramarska cesta 105, 10000 Zagreb
+ 385 (0)1 6313 044
zagreb@nakladaslap.com